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Abstract emerge from when multiple agents interact with one 
another. 

Many software systems have been successfully im- Although many competing definitions of what con- 
plemented using an agent paradigm which employs stitutes an agent exist there is generally good agree- 
a number of independent entities that communicate ment that agents should operate in a system with 
with one another to achieve a common goal. The other agents and that the agents should display 
distributed nature of such a paradigm makes it an the characteristics of autonomy and sociability [I]. 
excellent candidate for use in high speed reconfig- Agents are autonomous in that they operate inde- 
urable computing hardware environments such as pendently and asynchronously. Each agent makes its 
those present in modem FPGA’s. In this paper, a own decisions on actions to take and does not oper- 
distributed genetic algorithm that can be applied to ate either as a master or a slave. Agents are social in 
the agent based reconfigurable hardware model is in- that they communicate with other agents in the sys- 
troduced. The effectiveness of this new algorithm is tem to exchange data. Multiagent systems are com- 
evaluated by comparing the quality of the solutions prised of potentially many independent, autonomous, 
found by the new algorithm with those found by tra- relatively simple agents that communicate with one 
ditional genetic algorithms. The performance of a another and cooperate and/or compe to achieve a 
reconfigurable hardware implementation of the new common goal. 
algorithm on an FPGA is compared to  traditional 
single processor implementations. 2 Reconfigurable Computing 

Implementation of Agents 
1 Introduction 

Since its introduction in the mid 1980s the Mul- 
tiagent paradigm for constructing software system 
has grown dramatically. Multiagent systems emerged 
from the field of Distributed Artificial Intelligence 
(DAI) and have become prevalent in DAI. Multiagent 
systems are comprised of a number of relatively sim- 
ple computational entities known as agents that are 
capable of communicating with one another. Multiai 
gent systems are inherently distributed and have no 
centralized control. Although each agent’s computa- 
tion is relatively simple, fairly complex behavior can 

Fkcently, reconfigurable computing implementations 
of multiagent systems have been proposed [2, 31. 
These reconfigurable computing agent implementa- 
tions have the potential of providing systems with 
higher performance than multiple agent systems im- 
plemented using an instruction set processor. Agents 
display several characteristics that make them a good 
candidate for reconfigurable computing implementa- 
tions. 

First, each agent is usually relatively simple. This 
suggests that several agents could be implemented on 
a single FPGA. Furthermore, since it is frequently the 
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case that all of the agents are identical to one another, 
the regular structure of the multiagent system also 
facilitates its efficient implementation on an FPGA 
or other reconfigurable device. 

Also, multiagent systems are inherently distributed 
and have no centralized control and the agents com- 
municate with each other asynchronously. This struc- 
ture allows the agents to  be placed on the FPGA in 
a manner that minimizes timing concerns. Further- 
more, the distributed architecture and asynchronous 
communication scheme map well to a multiple FPGA 
device implementation if the total number of agents 
desired exceeds the capacity of a single device. 

2.1 An Agent Inspired Genetic Aigo- 
rithm 

Genetic algorithms map well to a multiple agent sys- 
tem where each agent performs the role of a single 
individual in the population. In this model, the com- 
putation required of each agent is relatively simple. 
To implement a genetic algorithm, offspring must be 
formed using crossover and mutation operations and 
the fitness of the offspring must be computed. In a 
multiagent paradigm it is desirable to perform these 
computations locally at each agent to avoid central- 
ized control and its associated bottlenecks. However, 
a standard genetic algorithm such as that presented 
in [4] has features that are not amenable to imple- 
mentation as a multiple agent system. 

Hence, the standard genetic algorithm was modi- 
fied to produce an algorithm in which al1,decisions 
are made locally within the agent that implements 
each individual in the population. This modified ge- 
netic algorithm is called Genetic Algorithm for Re- 
configurable computing (GARC). Furthermore, the 
decisions for mating and population replacement re- 
quire only the fitness value of the individual’s mate 
to be received from another agent. Thus, GARC exe- 
cutes independently in each agent with limited infor- 
mation from other agents in the system. GARC uti- 
lizes a number of agents to represent each individual 
in the population and one additional agent called the 
Global Fitness Registry agent that saves the chromo- 
some and fitness of the best solution found to date. 
The GARC is summarized below from the standpoint 

of a single agent in the system. 

While (not Done) 
Send chromosome and fitness 
If (one or more chromosomes are received) 

Form child using crossover 
else 

Form child using mutation 
If (Child’s Fitness is better than Parent’s fitness) 

Replace chromosome and fitness with Child’s 
Register chromosome and fitness 

end while 

In the GARC algorithm a single child will be 
formed by each agent for each generation. Although 
variations of GARC were evaluated in which the par- 
ents mated at each agent could be any two individ- 
uals in the population, the performance for the eval- 
uated fitness functions was comparable if each agent 
also served as a parent with the mating chromosome 
coming from another individual in the population. 
Since the latter approach requires less communica- 
tion and is simpler to implement in reconfigurable 
computing, the algorithm described here uses that 
approach. Each individual will randomly choose one 
or more other individuals to solicit for mating each 
generation. The mating solicitation occurs by send- 
ing the soliciting agent’s chromosome and fitness to 
one or more other agents in the system. A system pa- 
rameter controls how many other agents each agent 
will solicit for mating each generation. 

For example, agent 0 may choose to solicit agent 
1 for mating. Agent 0 will send its chromosome and 
Fitness value to agent 1. If agent 0 has the best fit- 
ness value of all of the agents who solicited agent 1 
€or that generation then agent 1 will choose to mate 
with agent 0 by using the chromosome sent by agent 
0 for crossover with its own chromosome to produce 
a single offspring. The offspring produced may also 
be mutated. If agent 1 is solicited by an agent with 
a better fitness value than agent 0 then agent 1 will 
not use the chromosome sent by agent 0 but will use 
the other agents chromosome instead. If an agent re- 
ceives no chromosomes from other agents in a gener- 
ation then an offspring will be produced by mutating 
the agent’s chromosome. 
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Thus, in GARC, each generation of n individuals 
will be formed by& parents. Every individual in 
the population will be guaranteed to serve as a par- 
ent at least once every generation (each agent always 
uses its own chromosome for crossover or mutation). 
However, individuals with better fitness values will 
be more likely to  be chosen as parents multiple times. 
In fact, the best individual will be guaranteed to be 
a parent one more time than the system parameter 
defining the number of mating solicitations per gener- 
ation per individual (once by the individual itself and 
once by each of the individuals it solicited). Thus, the 
mating selection is biased towards individuals with 
better fitness values and the system parameter in- 
creases the selection pressure as it is increased. This 
allows GARC to implement a biased mating selection 
policy while each individual has limited knowledge of 
other individuals fitness values and with no central- 
ized computation so each agent can make decisions 
locally with only the data communicated to i t  by 
other agents. This behavior is adaptable to the agent 
paradigm of autonomous operation with incomplete 
knowledge of the system. 

Also, GARC implements a biased replacement pol- 
icy using only local information which is a variation 
of binary tournament selection [13]. In binary tour- 
nament selection two individuals are selected at  ran- 
dom from the population and the individual with the 
betteTfitness is retained for the next generation. In 
the version of binary tournament selection used in 
GARC the selection is not random and each child 
is entered into a tournament competing with one of 
its parents. Variations of GARC in which the tour- 
nament would not be between parent and child pro- 
duced similar results, so the current implementation 
of GARC implements a binary tournament between 
child and parent which requires less communication 
and is more efficient to implement in hardware. Each 
agent either replaces its own chromosome with the 
chromosome of the offspring it formed or retains the 
previous generations chromosome. Again, each agent 
is able to act autonomously with incomplete system 
knowledge. Hence, the GARC algorithm conforms to  
the agent paradigm of autonomous entities commu- 
nicating with one another and making independent 
decisions with incomplete knowledge of the system. 

3 GARC Performance on a 
Conventional Computer 

GARC was first implemented on a conventional com- 
puter system in the C programming language to test 
its performance using several fitness functions and 
evaluate several variations of the algorithm. The fi- 
nal implementation of the GARC was chosen to of- 
fer reasonable performance compared to traditional 
genetic algorithms while allowing for fast and effi- 
cient implementation in hardware. Although there 
are many variations of genetic algorithms which may 
offer better performance, two were chosen for com- 
parison to GARC. The first was the simple genetic 
algorithm outlined in [4] and the second was a simi- 
Jar algorithm that implemented a biased replacement 
strategy. 

One fitness function used to evaluate GARC was 
the well known ONEMIN fitness function. This fit- 
ness function is simply the number of ones in the 
chromosome. The chromosome used was 32 bits long. 
The genetic algorithms attempted to minimize the 
fitness function. This fitness function has no Io- 
cal minimums and rewards algorithms that converge 
quickly. Another fitness function used was the we11 
known traveling salesman problem (TSP). The prob- 
lem instance used was from [5] and was the 29 city 
problem known as bays29. 

A number of test runs of the GARC and each of 
the two more traditional genetic algorithms were per- 
formed with the number of generations capped at 
5000 and the population size was set to 64 and the 
results were averaged. A completely random search 
of the state space for each of the fitness functions was 
also executed and its performance was compared to 
the performance of the genetic algorithms. The num- 
ber of generations required to find the optimal solu- 
tion (for the ONEMIN fitness function) or the best 
solution found (for the TSP) were recorded and com- 
pared to gauge the performance of the algorithms. 
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Algorithm 

Unbiased Replacement Unbiased Replacement 
Biased Replacement 1.19 

GARC 100 GARC 2987 1.34 

Table 1: ONEMIN Performance Comparison 

3.1 GARC Performance for ONEMIN 
Fitness Function 

The ONEMIN fitness function was used with the 
GARC, a random search, and the two variations of 
the traditional genetic algorithm (unbiased and bi- 
ased replacement strategy) with a population size 
of 64 and number of generations capped at 5000. 
The mean number of generations each algorithm exe- 
cuted, and the percentage of runs in which an optimal 
solution was found are shown in Table 1. 

The random search was unable to find the optimal 
solution in 5000 generations while the genetic algo- 
rithms found the optimal solution every time. The 
biased replacement policy version of the traditional 
genetic algorithm performed best with the GARC 
performing next best and the unbiased replacement 
policy GA performing considerably worse. It was ex- 
pected that the biased replacement policy algorithm 
would perform better for this fitness function since 
it will converge faster and the ONEMIN fitness func- 
tion has no local minimums. From these results it 
appears that GARC converges faster than the unbi- 
ased replacement policy algorithm but not as fast as 
the biased replacement policy algorithm. 

3.2 GARC Performance for the Trav- 
eling Salesman Problem 

The 29 city TSP was used as a fitness function with 
the GARC, a random search, and the traditional 
genetic algorithm with unbiased replacement policy 
with a population size of 64 and the number of gener- 
ations capped at 5000. The 29 city traveling salesman 
problem (TSP) used as a fitness function had a much 
larger search space than the fitness functions used. 
Consequently, none of the algorithms were able to 

Table 2: TSP Performance Comparison 

find an optimal solution to  the TSP instance. There- 
fore, the performance of the algorithms was measured 
by comparing the average best fitness value found and 
the ratio of this value to the known optimal value. 
These results are shown in Table 2. 

Again, all of the genetic algorithms performed sig- 
nificantly better than the random search algorithm 
and the GARC algorithm performed better than the 
unbiased replacement genetic algorithm but not as 
well as the biased replacement traditional genetic al- 
gorit hm . 

4 GARC Implementation in 
Reconfigurable Hardware 

Once the implementation of the GARC algorithm on 
a traditional computer system had demonstrated that 
it was capable of producing reasonably good results 
when compared to conventional genetic algorithms 
it was implemented in reconfigurable hardware on a 
standard FPGA. The performance of this implemen- 
tation was compared to the software implementation 
executing on a conventional computer system. The 
FPGA implementation was targeted to a Xilinx 2000e 
560 FPGA using the Handel C hardware description 
language (HDL) [SI. The Handel C language compiler 
executed on a standard PC in which a PCI board 
with the Xilinx FPGA was installed. The GARC 
interfaced to a C program executing on the PC to 
report results after the run was complete. The fit- 
ness function implemented was the ONEMIN fitness 
function previously described. The number of agents 
implemented was varied from 3 to 17. 

The first step in implementing the GARC in the 
FPGA was to determine how to take advantage of 
the parallelism afforded by the hardware. The im- 
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plementation of the GARC included coarse grained, 
medium grained, and fine grained parallelism. The 
coarse grained parallelism was obtained by executing 
each agent as a separate hardware entity. Thus, each 
agent in the system could operate in parallel. The 
medium grained parallelism was obtained by execut- 
ing the major subsystems of each agent in parallel 
where practical. The fine-grained parallelism was ob- 
tained using the par construct of the Handel C lan- 
guage to execute individual HDL statements in par- 
allel. 

Each agent consisted of four separate subsystems 
operating in paralIel. These subsystems were the 
Random Number Generator (RNG), the SendMate 
unit, the GetMate unit, and the Spawn unit. The 
Random Number Generator provided random num- 
bers to each of the other subsystems. The RNG is 
based on an additive congruent random number gen- 
erator found in [7] and produces eight bit random 
numbers. It is capable of producing a new random 
number every five cycles. 

The SendMate unit communicated to other agents 
over a blocking read, blocking write data channel 
provided in the Handel C hardware description lan- 
guage. The agents were completely connected with a 
dedicated communication channel from each agent in 
the system to every other agent in the system. This 
allowed for direct communication between any two 
agents with no delays caused by waiting on a commu- 
nication channel. It would be anticipated that as the 
number of agents increased the routing resources of 
the FPGA would be exhausted and a non-completely 
connected inter-connect scheme would have to be 
used. However, for the implementation tested with 
up to 17 agents no such effect was observer. 

The SendMate unit was responsible for sending the 
agents chromosome and fitness to other agents in the 
system to solicit mating. The SendMate unit sends 
the chromosome and fitness to an agent determined 
by the RNG output and is capable of sending the 
chromosome and fitness every two cycles. Delays are 
inserted to reduce the frequency that the chromo- 
some and fitness are sent to approximately once per 
generation. The number of delays could be decreased 
to effectively increase the number of mating solicita- 
tions per generation and increase the mating selection 

3 1  271 135 jl ;7 1 E 1 ;: 1 
1591 

Table 3: GARC FPGA Performance Data 

pressure. The mating selection pressure can thus be 
tuned for different fitness fvnctions. Too much mat- 
ing selection pressure can lead to premature conver- 
gence on a suboptimal solution while too little can 
slow the rate of convergence increasing the number 
of generations required to find a good solution. The 
GetMate unit receives the chromosome and fitness 
values from other agents. The mating selection is 
performed in this unit. The GetMate unit keeps the 
best chromosome sent to the agent for each gener- 
ation and provides this chromosome to the Spawn 
unit. 

The Spawn unit performs the actual spawning of 
a child by crossover and/or mutation. If a chromo- 
some has been received from another agent then the 
Spawn unit performs a crossover operation to  form a 
child. The child formed is probabilistically mutated 
based on the current random number from the RNG. 
The Spawn unit also performs the selective replace- 
ment replacing the parent’s chromosome if the child’s 
fitness is better that the fitness of the parent. 

The hardware implementation of the GARC was 
executed on the Xilinc FPGA with 3, 5, 9,iand 17 
agents. The equivalent number of gates utilized by 
the design, average clock cycles per generation, clock 
rate, and nanoseconds per generation are shown in 
Table 3 

An interesting observation from this table is that 
the performance of the hardware implementation of 
the GARC was nearly constant as the number of 
agents and thus the population size increased by 
nearly a factor of six. The performance would be 
almost perfectly constant except for the fact that the 
maximum clock rate of the design decreases from 40 
MHz to 30 MHz when the number of agents is in- 
creased from five to nine. This is probably due to 
longer routing traces being required as the FPGA 
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8200 190 
17 15100 190 79 

Table 4: GARC FPGA Performance Data 

becomes more completely utilized. Another interest- 
ing observation that may be made from this table is 
that the size of the design in total gates increases in 
a nearly linear fashion as the number of agents is in- 
creased. Thus, the performance remained nearly con- 
stant because the amount of hardware resources that 
were utilized increased in proportion to the number 
of agents that were employed. 

In Table 4, the performance of the GARC is com- 
pared to the performance of a software implementa- 
tion of the simple genetic algorithm and a software 
implementation of the GARC executing on an Pow: 
erPC G4 processor at 877 MHz. This table shows the 
execution time in nanoseconds per generation of the 
simple genetic algorithm, the GARC software imple- 
mentation, and the GARC FPGA implementation, 
as well as the speedup of the FPGA implementation 
compared to the GARC software implementation also 
increases. 

I 

The hardware implementation of the GARC out 
performs the software implementation by more than 
an order of magnitude for all of the number of agents 
tested. Since the performance of the hardware im- 
plementation of the GARC is nearly constant as the 
number of agents increases and the performance of 
the software implementation increased nearly linearly 
as the number of agents increases the speedup of the 
hardware implementation compared to the software 
implementation increases as the number of agents is 
increased. As the number of agents in the system is 
increases the speedup is 20. It increases to nearly 80 
as the number of agents is increased. 

5 Comparison to Other Hard- 
ware Implementations of 
GA's 

There have been several other hardware implementa- 
tions of genetic algorithms reported in the literature. 
Although some are similar to the GARC in some ways 
the GARC has characteristics the are different from 
the other approaches. A hardware implementation of 
the compact genetic algorithm [8] displays a speedup 
of nearly three orders of magnitude compared to a 
software version. The compact genetic algorithm ma- 
nipulates a single l-dimensional vector where l is the 
length of the chromosome instead of the entire p o p  
ulation of chromosomes. This dramatically reduces 
the number of bits required to represent the popula- 
tion and aIlows the algorithm to be implemented very 
efficiently in hardware. However, the compact GA is 
not a full-fledged GA and has limited applicability. 

Another hardware implementation of a GA that is 
completely distributed as is the GARC is presented 
in [IO]. Bowever, this architecture is implemented on 
an array of processors instead of on an FPGA. Also, 
this architecture has a fixed mating scheme and does 
not allow for any individual to mate with any other 
as a traditional GA does and as the GARC does. 

A hardware implementation of the steady state ge- 
netic algorithm is presented in [Si. This implemen- 
tation is a hardware pipeline implementation of the 
steady state GA and the execution time will increase 
linearly with the population size. The GARC's exe- 
cution time is nearly constant as the population size 
increases. Another implementation of a GA on a 
standard FPGA using the Handel C language is pre- 
sented in [Ill. This implementation also utilizes a 
pipeline approach. 

A hardware implementation of the traveling sales- 
man problem is presented in [12]. However, this 
implementation executes on a custom recodgurable 
computer and not a single FPGA. Also, this imple- 
mentation is a pipeline implementation whose execu- 
tion time increases linearly with the population size 
unlike the GARC. 
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